Simulation of Transient Temperature Field in the Selective Laser Sintering Process of W/Ni Powder Mixture
نویسندگان
چکیده
Selective laser sintering (SLS) is an attractive rapid prototyping and manufacturing (RP&M) technology as well as two-component metal powder has high melting pointer, high mechanical properties and high wear resistance. Hence, it’s meaningful to analyze its temperature field distribution and dynamical evolution rule in sintering process. A three-dimensional transient finite element model of SLS on the two-component metal powder W/Ni has been developed to predict the temperature field distribution in this paper. The dynamically loading of the moving Gaussian laser thermal resource was realized using the element “birth and death” technology and the ANSYS Parameter Design Language (APDL) in the model. Considering comprehensively thermal convection and the non-linear behavior of material properties etc., the temperature evolution of SLS process has been simulated effectively. The interrelation between the temperature field distribution and the processing parameters are analyzed. The sintering width and depth under certain selected sintering parameters are obtained so as to judge the metallurgical bonding performance between substrate and layers. The result of simulation can provide the theoretical basis for selecting reasonable processing parameters.
منابع مشابه
Experimental Investigation of Effective Parameters at Laser Sintering the Mixture of Iron and Copper Powder
Optimization of process parameter is one of the ideal goals in laser sintering. The results of this process were measured as output parameters like: density, micro hardening, macro hardening, tension, roughness, stiffness, balling. In this paper, the influence of input parameter such as laser power, scan speed, material powder and etc are surveyed on output parameter like balling affection and ...
متن کاملExperimental Investigation of Effective Parameters at Laser Sintering the Mixture of Iron and Copper Powder
Optimization of process parameter is one of the ideal goals in laser sintering. The results of this process were measured as output parameters like: density, micro hardening, macro hardening, tension, roughness, stiffness, balling. In this paper, the influence of input parameter such as laser power, scan speed, material powder and etc are surveyed on output parameter like balling affection and ...
متن کاملNumerical Simulation of Temperature Field in Selective Laser Sintering
The laser sintering process of multi-component powder W/Cu is simulated by ANSYS software based on the factors of radiation, convection and thermal physical parameters on temperature. The laser power and scanning velocity which are the key process parameters to affect directly in sintering molding are studied in paper. The results show that when the scanning velocity is constant, the sintering ...
متن کاملFinite element analysis of temperature and density distributions in selective laser sintering process
In the selective laser sintering (SLS) manufacturing technique a pre-heated layer of material powder undergoes a laser radiation in a selective way to produce three dimensional metallic or polymeric solid parts. Here, we consider sintering of polymer powder. The phase transformation in this process involves the material heat transfer which is strongly affected by the material sintering phenomen...
متن کاملProduction of W-Cu-Ni Alloy and Cu Bimetal by SPS Process and Analysis of Process Parameters
This study aims at investigating changes in microstructure and strength of W alloy and Cu bimetals with varying spark plasma sintering (SPS) temperature and percentage of copper in W-Cu-Ni alloy. After SPS of W (12 wt%)-Cu (14 wt%)-Ni (3 wt%) alloy powder into consolidated discs at 1350 ° C, they were spark plasma sintered to copper discs at various temperatures. Assessment of the interface mic...
متن کامل